Module aivis_engine_v2_cn_sdk_python.inference
Classes
-
Class for creating and handling constraint navigator inference. This is your entry point for all inference operations.
Private constructor. To create new instances use any of:
Static methods
-
@
FlavourRequirement([Flavour.FULL])
Create constraint navigator inference for given hub handle and config.
To create predictions with this inference instance use:
Parameters
hub
:aivis_engine_v2_cn_sdk_python.hub.Hub
- Instance of constraint navigator hub
config_json
:str
DtoConstraintNavigatorConfig
as JSON string
Returns
ConstraintNavigatorInference
- Instance of constraint navigator inference
-
@
FlavourRequirement([Flavour.FULL, Flavour.INFERENCE])
Create constraint navigator inference for the given constraint model and config.
To create predictions with this inference instance use any of:
Parameters
model_json
:str
DtoHubModel
as JSON stringconfig_json
:str
DtoInferenceConfig
as JSON string
Returns
ConstraintNavigatorInference
- Instance of constraint navigator inference
Methods
-
@
FlavourRequirement([Flavour.FULL, Flavour.INFERENCE])
Destroy this constraint navigator inference. It's always safe to destroy an inference. Internally the destruction only takes place after all references to this object have been released.
-
@
FlavourRequirement([Flavour.FULL, Flavour.INFERENCE])
Get this inference's
DtoInferenceDataSpecification
Returns
str
DtoInferenceDataSpecification
as JSON string
-
@
FlavourRequirement([Flavour.FULL, Flavour.INFERENCE])
For given data and timestamps, calculate the inference on the float valued models within the hub model. The result will be a list of
DtoFloatConstraintValues
instances corresponding to given timestamps. Make sure to fill theConstraintNavigatorData
with all data needed for calculation. Check the constraint hub model's inference data specification for needed signals and time ranges.Parameters
data
:ConstraintNavigatorData
- Instance of constraint navigator data
timestamps
:List[int]
- List of timestamps
Returns
List[DtoFloatConstraintValues]
- List of enhanced float data points
-
@
FlavourRequirement([Flavour.FULL, Flavour.INFERENCE])
For given data, timestamps and next normal config, calculate the inference and the closest point that satisfies the given conditions on the float valued models within the hub model. The result will be a list of
DtoFloatConstraintValuesWithNextNormal
instances corresponding to given timestamps. Make sure to fill theConstraintNavigatorData
with all data needed for calculation. Check the constraint model's inference data specification for needed signals and time ranges.Parameters
data
:ConstraintNavigatorData
- Instance of constraint navigator data
timestamps
:List[int]
- List of timestamps
config_json
:str
DtoFloatNextNormalConfig
as JSON string
Returns
List[DtoFloatConstraintValuesWithNextNormal]
- List of enhanced float data points
-